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IN TODAY’S COMPETITIVE MARKET ENVIRONMENT, THERE IS AN URGENT NEED
for the transformer manufacturing industry to improve transformer efficiency and to reduce costs,
since high-quality, low-cost products and processes have become the key to survival in the global
economy. The aim of transformer design optimization is to completely calculate the dimensions
of all the parts of the transformer based on prescribed specifications, using available materials
economically to achieve lower cost, lower weight, reduced size, and better operating performance.
In this article, we investigate the selection of the material of the transformer windings, which can
be copper (Cu) or aluminum (Al). The variation in the cost of the winding materials has a direct
impact on the optimum transformer design, since these materials are stock exchange commodi-
ties, and their prices can significantly fluctuate through time. Thus, in some transformer designs, it
is more economical to use Cu windings instead of Al, and in others vice versa.

To achieve an optimum design of a transformer, an integrated artificial intelligence (AI) tech-
nique is proposed. Over the last few years, AI has seen increased usage in various fields such as
industry, medicine, and finance. In our case, AI is used to reach an optimum transformer design
solution for the winding material selection problem. To be more precise, we combine decision
trees (DTs) and adaptive trained neural networks (ATNNs) with the aim of selecting the appro-
priate winding material (Cu or Al) to design an optimum distribution transformer (Figure 1).
Both methodologies have emerged as important tools for classification (in our case, the classifi-
cation problem has two possible classes: Cu or Al).

Importance of the Materials
The variation in the cost of the materials used in transformer manufacturing has a direct impact
on the design of the technically and economically optimum transformer. The material of the
transformer windings can be Cu or Al (Figure 2). Since Cu and Al are stock exchange commodi-
ties, their price can significantly change through time. In addition, both materials have different
technical characteristics. To check which winding material results in a more economical solu-
tion, there is a need to optimize the transformer twice (once with Cu and once with Al windings)
and afterwards to select the most economical design. The solution of the winding selection prob-
lem can be implemented using AI, since AI has been proven very efficient in solving problems in
the transformer industry.

How to Optimize a Transformer Design
It is essential to find an optimum transformer that satisfies the technical specifications and
the customer needs with the minimum manufacturing cost. Three-phase wound-core
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distribution transformers are considered, whose magnetic
circuit is of shell type. The optimum transformer is calcu-
lated with the help of a suitable computer program, which
uses 134 input parameters to make the transformer design
as parametric as possible. These 134 input parameters are
split into the following eight types:

✔ Description variables: e.g., rated power, rated
low and high voltage, frequency, material of low-
and high-voltage coil, and low- and high-voltage
connection.

✔ Variables that rarely change: e.g., core space factor,
turns direction space factor, and specific weight of
materials used.

✔ Variables with default values: e.g., low- and high-volt-
age taps, tolerance for no-load losses, load losses, and
short-circuit voltage.

✔ Cost variables: e.g., cost per weight unit for low- and
high-voltage conductor, magnetic steel, oil, insulating
paper, duct strips, and corrugated panels.

✔ Optional variables: e.g., variables that can either be
calculated by the program or defined by the user.

✔ Various parameters: e.g., type of low- and high-volt-
age conductor, number of low- and high-voltage
ducts, low- and high-voltage maximum gradient,
maximum ambient temperature, and maximum wind-
ing temperature.

✔ Variables for conductor cross-section calculations:
low- and high-voltage conductor cross-sections can be
defined by the user or can be calculated using current
density or thermal short-circuit test.

✔ Solution loop variables: e.g., low voltage turns, width
of core leg, height of core window, magnetic induction,
low- and high-voltage cross-section area. Figure 3
shows the height of core window (G) and the width of
the core leg (D) that are used as solution loop variables
during the transformer optimization process. Note that
the magnetic material properties (e.g., type, grade,
thickness, and specific losses) are given as input data
when defining the values of magnetic induction within
the solution loop variables.

The computer program allows many variations in design
variables. These variations permit the investigation of
enough candidate solutions. For each one of the candidate
solutions, it checks if all the specifications (limits) are sat-
isfied, and if they are satisfied, the manufacturing cost is
estimated and the solution is characterized as acceptable.
On the other hand, the candidate solutions that violate the
specification are characterized as nonacceptable solutions.
Finally, among the acceptable solutions, the transformer
with the minimum manufacturing cost is selected, which is
the optimum transformer. It is important to note that some
of these 134 input parameters have a very strong impact
on the characteristics of the optimum transformer, such as
the unit cost (in US$/kg) of the magnetic material and the
type of the winding material (Cu or Al).
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figure 1. A three-phase distribution transformer. 

figure 2. Assembled active part of three-phase wound core
distribution transformer. Windings are illustrated in beige
color. 

figure 3. Core constructional parameters (G: height of core
window, D: width of core leg, Eu: thickness of core leg).
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Impact of Key Parameters
on the Designer’s
Decision Process
Table 1 shows how changing core and
conductor design can reduce no-load
and load losses but also affect the cost
of the transformer when we try to fur-
ther improve the optimum design.

The optimum design is imple-
mented through the following steps:

1) Initially, the input variables
are entered in the computer
program. A lot of different
values to the solution loop
variables are given, so a lot of
candidate solutions are con-
sidered.

2) The computer program cal-
culates the candidate solu-
tions that are acceptable and the candidate solutions
that are rejected (they violate one or more of the
constraints).

3) The acceptable solutions are sorted according to their
manufacturing cost. The optimum transformer corre-
sponds to the least-cost solution.

It is possible that all the candidate solutions are rejected.
Then the computer file of nonacceptable solutions must be
studied, and the reasons of rejection must be understood.
Generally, the following cases may appear:

✔ necessity to decrease or increase no-load losses
✔ necessity to decrease or increase load losses
✔ necessity to decrease or increase short-circuit voltage.

The no-load losses are decreased by one of the following
methods (linked to solution loop variables):

✔ increasing the number of turns of the low-voltage coil
✔ decreasing the magnetic induction
✔ decreasing the height of core window.

The no-load losses are increased by one of the following
methods (linked to solution loop
variables):

✔ decreasing the number of
turns of the low-voltage coil

✔ increasing the magnetic
induction

✔ increasing the height of core
window.

The load losses are decreased with
the following ways (linked to solu-
tion loop variables):

✔ decreasing the number of
turns of the low-voltage coil

✔ increasing the magnetic
induction

✔ increasing the cross-section
area of the high-voltage coil

✔ increasing the cross-section area of the low-voltage
coil

✔ increasing the height of core window.
The short-circuit voltage is decreased as follows:

✔ decreasing the number of turns of the low-voltage coil
✔ increasing the height of core window.

Generally, the cost of transformer is decreased as follows:
✔ increasing the no-load losses
✔ increasing the load losses.

From the aforementioned, we derived that there is an interac-
tion between the input and the output variables (manufactur-
ing cost, designed no-load losses, load losses, and
short-circuit voltage). For example, the no-load losses are
decreased with the decrease of the magnetic induction (with
the rest of the input parameters to be constant), but unfortu-
nately the load losses are increased. The optimum solution is
derived from selecting such values for the input variables so
that the transformer satisfies the constraints with the mini-
mum manufacturing cost. This selection is implemented
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figure 4. Value of attribute I3 for part of the knowledge base (1,350 FOD).
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I3 Attribute

No-Load Losses Load Losses Cost 
To decrease no-load losses

A) Use lower-loss core material Lower No change Higher 
B) Decrease flux density by 

1) Increasing core Cross Section Lower Higher Higher 
Area (CSA) 

2) Decreasing volts per turn Lower Higher Higher 
C) Decrease flux path length by  Lower Higher Lower 

decreasing conductor CSA
To decrease load losses 

A) Decrease current density by increasing Higher Lower Higher 
conductor CSA 

B) Decrease current path length by 
1) Decreasing core CSA Higher Lower Lower 
2) Increasing volts per turn Higher Lower Lower

table 1. Loss reduction alternatives.



through many tries (many different values for the input
parameters) and is executed with the help of a suitable com-
puter program.

Creation of the Knowledge Base
One of the most crucial steps in AI methodologies is
undoubtedly the creation of the knowledge base, which is
composed of the learning, validation (in the case of the

ATNN), and test set. To generate these sets, six transformer
power ratings (250, 400, 630, 800, 1,000, and 1,600 kVA) are
considered. For each transformer, nine categories of losses
are taken into account, namely AA′, AB′, AC′, BA′, BB′,
BC′, CA′, CB′, CC′, according to CENELEC. For example, a
250 KVA transformer with AC’ category of losses has 3,250
W of load losses and 425 W of no-load losses. Seven differ-
ent unit costs (in US$/kg) are considered for the Cu and the

Al winding. Based on the above,
6 · 9 · 7 = 378 transformer design
optimizations with Cu winding (Cu
designs) and 378 transformer design
optimizations with Al winding (Al
designs) are realized. For each of
them, either the Cu design or the Al
design is the final optimum design,
(FOD) i.e., the one having the least
cost. In total, 6 · 9 · 72 = 2, 646
FODs are collected and stored into
databases or other knowledge base.
The knowledge base is composed of
sets of FODs, and each of them is
composed of a collection of
input/output pairs. The input pairs
or attributes are the parameters
affecting the selection of winding
material. Thirteen attributes are
selected based on extensive research
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figure 5. DT for selection of winding material in distribution transformers.
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figure 6. Adaptive training mechanism for winding material selection. 
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and transformer design experience, as shown in Table 2. The
output pairs comprise the type of winding (Cu or Al) that
corresponds to each FOD. Figure 4 presents the values of the
attribute I3 for 1,350 FODs of the
knowledge base. It is important to
mention that to obtain each FOD,
approximately two hours are required
for a transformer designer who is
familiar with the use of the trans-
former design software considered.

Decision Trees
The DT methodology is a nonpara-
metric technique able to produce clas-
sifiers to reduce information for new
and unobserved cases. The attractive-
ness of DTs is that they solve a prob-
lem by creating IF-THEN rules,
which are readily comprehended by
humans. The DT is structured upside
down, built on the basis of the learn-
ing set. The learning set comprises a
number of preclassified states defined
by a list of potential attributes. Except
for the root node (or top node), every
node of a DT is the successor of its
parent node. Each of the nonterminal
nodes (or test nodes) has two succes-
sor nodes. Nodes that have no succes-
sor nodes are called terminal nodes.
To detect if a node is terminal, i.e.,
sufficiently class pure, the classifica-
tion entropy of the node is compared
with a minimum preset value Hmin. If
it is lower than Hmin, then the node is
sufficiently class pure and it is not
further split. Such nodes are labeled
LEAVES. Otherwise, a suitable test is
sought to divide the node by applying
the optimal splitting rule. In the case
that no test can be found with statisti-
cally significant information gain, the
node is declared a DEADEND and it
is not split.

In our case, the usage of the DT
method helps us to select the most
important attributes among 13 poten-
tial attributes (Table 2) to successfully
select the winding material in distri-
bution transformers. The learning set
is composed of 1,350 sets of FODs,
and the test set has 1,296 independent
sets of FODs. Figure 5 illustrates the
DT for the selection of the winding
material, which is automatically

constructed by using the learning set of 1,350 FODs with the
13 attributes (Table 2). Each terminal node of the DT (Figure
5) produces one decision rule, on the basis of its Cu index,
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figure 7. Classification success rate on test set using 16 different training func-
tions of MATLAB Neural Network Toolbox.
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figure 8. Classification success rate on test set using 11 different transfer func-
tions of MATLAB Neural Network Toolbox.
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Symbol Attribute Name Symbol Attribute Name 

I1 CU unit cost ($/kg) I8 Guaranteed load losses (W)
I2 AL unit cost ($/kg) I9 I7/I8
I3 I1/I2 I10 Rated power (kVA)
I4 Magnetic material unit cost ($/kg) I11 Guaranteed short-circuit voltage (%)
I5 I4/I1 I12 I7/I10

I6 I4/I2 I13 I8/I10

I7 Guaranteed no-load losses (W) 

table 2. Thirteen attributes have been selected based on 
extensive research and transformer design experience.



i.e., the ratio of Cu designs over the FOD of that node. For
example, from terminal node 17 of the DT of Figure 5, the
following decision rule is derived: If I3 > 0.6886 and
I5 > 0.5255 and I5 ≤ 0.5356 and I7 > 860, then choose Al,
since the Cu index of node 17 is 0.0.

It is also important to note that, among the 13 attributes,
the DT method automatically selects the six most important
ones (attributes I3, I4, I5, I7, I8, and I13) that are appearing
in the various test nodes of the DT of Figure 5. The selection
of the above six attributes is reasonable and expected, since
they are all related to the selection of the winding material
(Cu or Al) in distribution transformers. Thus, taking for
granted the values of the six above-mentioned attributes, the
DT of Figure 5 estimates the appropriate material (Cu or Al)
from which the distribution transformer has to be designed.

The DT of Figure 5 achieves a total classification success
rate of 90.92% on the test set, which makes the DT method
very suitable for the selection of the winding material in dis-
tribution transformers.

Adaptive Trained Neural Networks
The artificial neural network methodology is a computer infor-
mation processing system that is capable of sufficiently repre-
senting any nonlinear function. Techniques based on artificial
neural networks are especially effective in the solving of high-
complexity problems for which a traditional mathematical
model is difficult to build, where the nature of the input-output
relationship is neither well defined
nor easily computable. Over the last
few years, artificial neural network
techniques have seen increased
usage in various areas such as in the
fields of industry, electronics, robot-
ics, and medicine. The recent exten-
sive research in neural classification
has established that neural networks
are a promising alternative to various
conventional classification methods.

In the case of winding material selection problem,
there is no simple relationship among the parameters
involved in the solution. Artificial neural networks, due to
their highly nonlinear capabilities and universal approxi-
mation properties, are proposed to select the appropriate
winding material that results in optimum distribution
transformer design. This means that the considered prob-
lem is a problem of classification into two classes: Cu or
Al. At the training stage, the proper artificial neural net-
work architecture (e.g., number and type of neurons and
layers) is selected. In addition, an adaptive training mech-
anism allows the artificial neural network to learn from its
mistakes and correct its output by adjusting the parame-
ters (weights) of its neurons. The adaptive training
process enhances the performance of the proposed
method as additional training data become available. It is
important to note that normalization of data is a crucial
stage for training the ATNN. In doing so, it not only facil-
itates the training process but also helps in shaping the
activation function. It should be done so that the higher
values do not suppress the influence of lower values and
the symmetry of the activation function is retained.

Moreover, we divide the knowledge base into training,
validation, and test sets. The selection of the size of these
sets is important for the ATNN behavior. Since our goal is
to find the neural network having the best performance on
new data, the simplest approach to the comparison of
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figure 9. The combination of the best three training and transfer functions.
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The Best Three Training and Transfer Functions

13 Attributes 6 DT Attributes 
1 hidden layer CSR on TS 1 hidden layer CSR on TS 
70%LS - 30%TS: 92.28% 70%LS - 30%TS: 92.16% 
50%LS - 50%TS: 95.92% 50%LS - 50%TS: 94.28% 
2 hidden layers 2 hidden layers 
70%LS - 30%TS: 94.48% 70%LS - 30%TS: 92.59% 
50%LS - 50%TS: 95.73% 50%LS - 50%TS: 94.58% 

LS: learning set,  TS: test set,  CSR: classification success rate

table 3. The results of the experiments in brief.
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different neural networks is to evaluate
the error function using data that is
independent of that used for training.
Various neural networks are trained by
minimization of an appropriate error
function defined with respect to a
training data set. This function defines
the classification failure rate of the
winding selection problem. The per-
formance of the neural networks is
then compared by evaluating the error
function using an independent valida-
tion set, and the network having the
smallest error with respect to the vali-
dation set is selected. Since this proce-
dure can itself lead to some
over-fitting to the validation set, the
performance of the selected network
should be confirmed by measuring its
performance on a third independent
set of data called a test set (Figure 6).
Consequently, in our case, we use a
learning set that is always split into a
training set and a validation set. After
training, each of the different neural
network architectures is tested on the
basis of an independent test set. Final-
ly, the neural network architecture
with the minimum classification fail-
ure rate (maximum classification suc-
cess rate) on the test set is selected,
which is the optimum ATNN for the
winding material selection problem. In
this article, the research of the opti-
mum ATNN architecture is conducted
by using the MATLAB Neural Net-
work Toolbox. When new FODs are
coming, the neural network is
retrained following the above-men-
tioned training mechanism.

Selection of the Optimum
Training and Transfer Function
for the Neural Network
To select the best training and transfer
function for the neural network, we
follow the procedure below. Taking
into consideration initial investigation
that showed that the 13-13-1 architec-
ture (13 input neurons, 13 neurons in
the hidden layer, and one single neu-
ron in the output layer) achieved the
highest classification success rate on
the test set, we use all the possible
combinations of training and transfer
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figure 10. The best ten results (according to the highest classification success rate
on test set) of each case are presented using 13 attributes and two different cases as
concerns the sizes of learning and test set. (a) One hidden layer with 50% LS and
50% TS. (b) One hidden layer with 70% LS and 30% TS. (c) Two hidden layers with
50% LS and 50% TS. (d) Two hidden layers with 70% LS and 30% TS.
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functions of the MATLAB Neural Network Toolbox to
reach the best result. Figures 7 and 8 show the training and
transfer function results, respectively, using 1350 FODs,
from which 675 FODs composed the learning test and the
remaining 675 FODs the test set. As shown in Figures 7 and
8, the best three training functions are traincgb, traingdx,
and trainbfg, and the best three transfer functions are tansig,
satlins, and logsig, respectively. Based on these training and
transfer functions, we conducted new experiments among
all the possible combinations of them. As shown in Figure
9, the highest classification success rate is achieved by
using the traincgb as training function and the satlins as
transfer function. Traincgb is a network training function
that updates weight and bias values according to the conju-
gate gradient backpropagation with Powell-Beale restarts,
and satlins is a symmetric saturating linear transfer func-
tion. Figure 9 shows that this combination achieved 95.71%
classification success rate on the test set, which is not only
the best classification performance but also considered as
very high for the transformer winding material selection
problem. It should be noted that the classification success
rates of Figure 9 resulted from the average of ten different
executions of the algorithm.

Selection of the Optimum Adaptive 
Trained Neural Network
In this section, we introduce the results of the experiments
of the winding material selection in distribution transform-
ers. Table 3 contains the results in brief. The primary goal
is to find the optimum architecture of the ATNN that has
the highest classification success rate on test set, solving
successfully the problem of the winding material selection.

To achieve our goal, we introduce an extensive research in
ATNN. To be more precise, we carry out experiments by
studying ATNN behavior when we have all the 13 attrib-
utes as input neurons and when we have six attributes,
which are stemmed from DT methodology
(I3, I4, I5, I7, I8,I13). Both cases have one single neuron in
the output layer that represents the type of winding (Cu or
Al) that corresponds to each FOD. Concerning the hidden
layer(s), we present a thoroughness research by investigat-
ing numerous possible topologies of the ATNN. To be more
precise, one and two hidden layers are explored by trying a
wide range of candidate number of neurons. More specifi-
cally, in the cases of 13 attributes and six DT attributes
with one hidden layer, we examine 18 different numbers of
neurons (2, 4, 6, 8, 10, 13, 15, 17, 19, 22, 24, 26, 28, 30,
32, 34, 36, and 39 neurons). In case of two hidden layers,
when we have 13 attributes, we investigate 81 different
combinations for the number of neurons of the two hidden
layers (namely all the possible combinations of the follow-
ing numbers of neurons: 10, 13, 16, 19, 22, 26, 30, 34, and
39 neurons), whereas in case of the six DT attributes, we
investigate 64 different combinations of candidate solutions
(namely all the possible combinations of the following
numbers of neurons: 3, 6, 9, 12, 15, 18, 21, and 24 neu-
rons). It should be noted that the classification success rate
in each case of the learning and test set resulted in the aver-
age of five different executions of the algorithm.

In addition, the split of the knowledge base into learning
set (training set and validation set) and test set has been
investigated through the following two different cases: in
the first case, the learning set is composed of 50% of total
FODs and the remaining 50% compose the test set (differ-
ent than the FODs of the learning set), while in the second
case, the learning set is composed of 70% of total FODs
and the remaining 30% compose the test set. In addition, it
is important to mention that we checked the test case that
has 30% of total FODs as learning set and 70% of total
FODs as test set. But, in this case, the behavior of the
ATNN was unstable and the classification success rate on
the test set was approximately 80%, which is quite low in
comparison with the other test cases. This observation is
reasonable due to the fact that the ATNN does not have
enough data concerning the learning set, implementing
poor training of the ATNN.

Figure 10 presents the best ten classification success rate
results for 13 attributes, one or two hidden neurons, and the
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figure 11. The optimum ATNN architecture.
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in transformer manufacturing has a direct impact on the design 
of the technically and economically optimum transformer. 
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two different splits of the knowl-
edge base (50%LS-50%TS and
70%LS-30%TS). In Figure 10,
when there are two hidden layers,
we symbolize them, for example, as
13_26, which means that the first
hidden layer has 13 neurons and the
second hidden layer has 26 neurons.
Thus, in this particular example, the
architecture of the ATNN is 13-13-
26-1, i.e., 13 neurons in the input
layer, 13 neurons in the first hidden
layer, 26 neurons in the second hid-
den layer, and one single neuron in
the output layer. It is important to
note that the input data is normal-
ized by dividing the value of each
attribute by its maximum value,
which contributes to the efficient
training of the neural network.

As shown in Figure 10(a), we
achieve the highest classification
success rate on test set (95.92%)
using a fully connected three-layer
feed-forward system with the follow-
ing topology: 13-19-1 (13 input neu-
rons in the input layer, 19 neurons in
the hidden layer, and one single neu-
ron in the output layer). Figure 11
presents the optimum neural network
mentioned above. In this case, 50%
of the FODs is used as learning set
and the remaining 50% of the FODs
as test set. In addition, when there
are two hidden layers, the best
ATNN topology is 13-13-26-1 (13
input neurons in the input layer, 13
neurons in the first hidden layer, 26
neurons in the second hidden layer,
and one single neuron in the output
layer), with 95.73% classification
success rate on test set [Figure 10
(c)]. Consequently, both cases show
balanced behavior, approaching sig-
nificant classification success rate on
the test set.

Moreover, when we use 70% of
the FODs as learning set and the
remaining 30% of the FODs as test
set, the result is not as good as in
the previous cases. For instance,
the ATNN topology of 13-22-1
achieves 92.28% classification suc-
cess rate on test set (the best with
one hidden layer), whereas the

49

figure 12. The best ten results (according to the highest classification success rate
on test set) of each case are presented using six DT attributes and two different cases
as concerns the sizes of learning and test set. (a) One hidden layer with 50% LS and
50% TS. (b) One hidden layer with 70% LS and 30% TS. (c) Two hidden layers with
50% LS and 50% TS. (d) Two hidden layers with 70% LS and 30% TS.
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architecture of 13-26-26-1 implements quite better results,
namely 94.48% classification success rate on test set (the
best with two hidden layers).

Figure 12 illustrates the results using the six attributes
that have been selected by the DT, namely there are six
input neurons in the input layer. In this case, the results
are slightly worse in comparison with 13 attributes. Fig-
ure 12(a) and (c) shows that the neural network achieves
classification success rate of 94.28% (6-8-1 architecture,
the best with one hidden layer) and 94.58% (6-6-9-1 and
6-3-15-1, the best with two hidden layers), respectively,
using 50% of the FODs as learning set and 50% of the
FODs as test set. Although we use different topologies,
we obtain almost the same performance, which proves the
efficiency of the proposed methodology. However, when
we use 70% of the FODs as learning set and the rest as
test set, the result is approximately 2% worse, as it is
shown in Figure 12(b) and (d).

Conclusions
In this article, we propose the DT and ATNN methodologies
with the aim of the appropriate selection of winding materi-
al for optimum transformer design. A rich knowledge base
is constructed that is composed of 2,646 FODs. Each indi-
vidual FOD requires approximately two hours to be built.
This knowledge base is used to classify the selection of
winding material (Cu or Al) in distribution transformer
designs, based on 13 attributes. These attributes are selected
by extensive research and transformer design experience.

We present the DT methodology with the aim of creating
simple IF-THEN rules for solving the winding material
selection problem in distribution transformers. This tech-
nique achieves 90.92% classification success rate on the test
set. In addition, the ATNN technique is also presented for
winding material classification in distribution transformers.
The performance of the ATNN was found to be exceptional,
which emerged this method as an important tool for classifi-
cation. More specifically, the classification success rate on
the learning set was 97.97% and 95.92% on the test set
using all 13 attributes. These performances are approxi-
mately 1.5% lower when we use the six attributes selected
by the DT as inputs to the ATNN model. The result that is
achieved by the ATNN is highly suitable for industrial use,
because of its accuracy and implementation speed, since the
ATNN method eliminates the need to optimize the trans-
former twice.
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